If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^3+2Y^2+16Y+32=0
We add all the numbers together, and all the variables
2Y^2+16Y=0
a = 2; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*2}=\frac{-32}{4} =-8 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*2}=\frac{0}{4} =0 $
| -5w-16=14 | | 3x=911 | | 7x-19=9x+8 | | -20x+40=40x+20 | | 58x-86=-67+58 | | 2(c+6)=16 | | 2=1.16^t | | 676.11=π25h | | -2(3y+7=28 | | -40+40=20x+20 | | 0.36(6)+0.06=0.18(12+x) | | 6(x-5)=5(x+5 | | 49a^2=121 | | 8k-3k=24 | | 8(1t-3)=-6t-4-2t | | 3+15x=45 | | 3x2+2=-7x | | 9v+9=18 | | 9.3+8x=2(x-5)+12 | | 6t+15+2t=4t+43 | | 16x-32=-45-58x | | -x*0,94-11,1=0 | | z/3=(5/6)z+25 | | 38-x=258 | | 4x-5/3-7x=4/1 | | -5x-15=27 | | 2=1.16^x | | 4(2s+10)=-40 | | 4/4b+7=2/b-7 | | 3p^=12 | | 1/6(12-6y)=5y-6 | | 10q+16=16 |